Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 8(8): 835-840, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28835798

RESUMO

Adenosine A2A receptor (A2AAdoR) antagonism is a nondopaminergic approach to Parkinson's disease treatment that is under development. Earlier we had reported the therapeutic potential of 7-methoxy-4-morpholino-benzothiazole derivatives as A2AAdoR antagonists. We herein described a novel series of [1,2,4]triazolo[5,1-f]purin-2-one derivatives that displays functional antagonism of the A2A receptor with a high degree of selectivity over A1, A2B, and A3 receptors. Compounds from this new scaffold resulted in the discovery of highly potent, selective, stable, and moderate brain penetrating compound 33. Compound 33 endowed with satisfactory in vitro and in vivo pharmacokinetics properties. Compound 33 demonstrated robust oral efficacies in two commonly used models of Parkinson's disease (haloperidol-induced catalepsy and 6-OHDA lesioned rat models) and depression (TST and FST mice models).

2.
Eur J Med Chem ; 134: 218-229, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28415011

RESUMO

Adenosine induces bronchial hyperresponsiveness and inflammation in asthmatics through activation of A2B adenosine receptor (A2BAdoR). Selective antagonists have been shown to attenuate airway reactivity and improve inflammatory conditions in pre-clinical studies. Hence, the identification of novel, potent and selective A2BAdoR antagonist may be beneficial for the potential treatment of asthma and Chronic Obstructive Pulmonary Disease (COPD). Towards this effort, we explored several prop-2-ynylated C8-aryl or heteroaryl substitutions on xanthine chemotype and found that 1-prop-2-ynyl-1H-pyrazol-4-yl moiety was better tolerated at the C8 position. Compound 59, exhibited binding affinity (Ki) of 62 nM but was non-selective for A2BAdoR over other AdoRs. Incorporation of substituted phenyl on the terminal acetylene increased the binding affinity (Ki) significantly to <10 nM. Various substitutions on terminal phenyl group and different alkyl substitutions on N-1 and N-3 were explored to improve the potency, selectivity for A2BAdoR and the solubility. In general, compounds with meta-substituted phenyl provided better selectivity for A2BAdoR compared to that of para-substituted analogs. Substitutions such as basic amines like pyrrolidine, piperidine, piperazine or cycloalkyls with polar group were tried on terminal acetylene, keeping in mind the poor solubility of xanthine analogs in general. However, these substitutions led to a decrease in affinity compared to compound 59. Subsequent SAR optimization resulted in identification of compound 46 with high human A2BAdoR affinity (Ki = 13 nM), selectivity against other AdoR subtypes and with good pharmacokinetic properties. It was found to be a potent functional A2BAdoR antagonist with a Ki of 8 nM in cAMP assay in hA2B-HEK293 cells and an IC50 of 107 nM in IL6 assay in NIH-3T3 cells. Docking study was performed to rationalize the observed affinity data. Structure-activity relationship (SAR) studies also led to identification of compound 36 as a potent A2BAdoR antagonist with Ki of 1.8 nM in cAMP assay and good aqueous solubility of 529 µM at neutral pH. Compound 46 was further tested for in vivo efficacy and found to be efficacious in ovalbumin-induced allergic asthma model in mice.


Assuntos
Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Asma/tratamento farmacológico , Receptor A2B de Adenosina/metabolismo , Xantina/química , Xantina/uso terapêutico , Antagonistas do Receptor A2 de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacocinética , Animais , Asma/induzido quimicamente , Asma/metabolismo , Cães , Desenho de Fármacos , Células Hep G2 , Humanos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Ovalbumina , Ratos , Receptor A2B de Adenosina/química , Xantina/metabolismo , Xantina/farmacocinética
3.
J Med Chem ; 60(2): 681-694, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28055204

RESUMO

Our initial structure-activity relationship studies on 7-methoxy-4-morpholino-benzothiazole derivatives featured by aryloxy-2-methylpropanamide moieties at the 2-position led to identification of compound 25 as a potent and selective A2A adenosine receptor (A2AAdoR) antagonist with reasonable ADME and pharmacokinetic properties. However, poor intrinsic solubility and low to moderate oral bioavailability made this series unsuitable for further development. Further optimization using structure-based drug design approach resulted in discovery of potent and selective adenosine A2A receptor antagonists bearing substituted 1-methylcyclohexyl-carboxamide groups at position 2 of the benzothiazole scaffold and endowed with better solubility and oral bioavailability. Compounds 41 and 49 demonstrated a number of positive attributes with respect to in vitro ADME properties. Both compounds displayed good pharmacokinetic properties with 63% and 61% oral bioavailability, respectively, in rat. Further, compound 49 displayed oral efficacy in 6-OHDA lesioned rat model of Parkinson diseases.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Benzotiazóis/farmacologia , Cicloexanóis/farmacologia , Receptor A2A de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/farmacocinética , Administração Oral , Animais , Antiparkinsonianos/síntese química , Antiparkinsonianos/farmacocinética , Antiparkinsonianos/farmacologia , Benzotiazóis/síntese química , Benzotiazóis/farmacocinética , Cicloexanóis/síntese química , Cicloexanóis/farmacocinética , Desenho de Fármacos , Células HEK293 , Humanos , Levodopa/farmacologia , Masculino , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Ratos Wistar , Relação Estrutura-Atividade
4.
Bioorg Med Chem Lett ; 21(12): 3596-602, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21571530

RESUMO

GPR91, a 7TM G-Protein-Coupled Receptor, has been recently deorphanized with succinic acid as its endogenous ligand. Current literature indicates that GPR91 plays role in various pathophysiology including renal hypertension, autoimmune disease and retinal angiogenesis. Starting from a small molecule high-throughput screening hit 1 (hGPR91 IC(50): 0.8 µM)-originally synthesized in Merck for Bradykinin B(1) Receptor (BK(1)R) program, systematic structure-activity relationship study led us to discover potent and selective hGPR91 antagonists e.g. 2c, 4c, and 5 g (IC(50): 7-35 nM; >1000 fold selective against hGPR99, a closest related GPCR; >100 fold selective in Drug Matrix screening). This initial work also led to identification of two structurally distinct and orally bio-available lead compounds: 5g (%F: 26) and 7e (IC(50): 180 nM; >100 fold selective against hGPR99; %F: 87). A rat pharmacodynamic assay was developed to characterize the antagonists in vivo using succinate induced increase in blood pressure. Using two representative antagonists, 2c and 4c, the GPR91 target engagement was subsequently demonstrated using the designed pharmacodynamic assay.


Assuntos
Descoberta de Drogas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/síntese química , Administração Oral , Animais , Concentração Inibidora 50 , Masculino , Estrutura Molecular , Ratos , Ratos Wistar , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...